

MONTAGE

DIN EN 14399-4/-6 und
DIN EN 14339-8/-6

gemäß DIN EN 1993-1-8 / DIN EN 1090-2 / DASt-Richtlinie 024

- Kategorisierung der Schraubverbindungen
- Vorspannkräfte, Anziehmomente und Weiterdrehwinkel
- Modifiziertes Drehmoment-Vorspannverfahren (MDV)
- Kombiniertes Vorspannverfahren (KV)
- Klemmlängen- bzw. Klemmpakettabellen
- Bemessungswerte der Tragfähigkeiten

AUSGABE 5

VON HV-/HVP-GARNITUREN

		igskategorien, Ausführungsformer EN 1993-1-8 / DASt-Richtlinie 024	n und Nachweiskriterien			
Kategorie		Ausführungsform	Vorspannung	Nachw	eisk	riterium
Α	ngen	Scher-/ Lochleibungs- verbindung	nicht vorgespannt handfest angezogen	$F_{v,Ed} \leq$	{	$\begin{matrix} F_{v,Rd} \\ F_{b,Rd} \end{matrix}$
В	Scherverbindungen	Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit (GZG)	vorgespannt auf Mindestvorspannkraft F _{p,C} nach DIN EN 1090-2 *)	$F_{v,Ed,ser}$ $F_{v,Ed} \le$	≤ {	$\frac{F_{\text{S, Rd, ser}}}{F_{\text{v,Rd}}}$
С	Scherv	Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit (GZT)	vorgespannt auf Mindestvorspannkraft F _{p,C} nach DIN EN 1090-2	$F_{v,Ed} \le \sum F_{v,Ed}$	{ ≤	$F_{s,Rd}$ $F_{b,Rd}$ $N_{net,Rd}$
D	gen		nicht vorgespannt handfest angezogen			
E	Zugverbindungen		vorgespannt auf Mindestvorspannkraft F _{p,C} nach DIN EN 1090-2v	$F_{t,Ed} \leq$	{	F _{t,Rd} B _{n,Rd}
_	Zugve		vorgespannt auf Regelvorspannkraft F _{p.C*} nach DASt-Richtlinie 024			p,r.u

Anmerkung: *) Wird die Vorspannung nicht für den Gleitwiderstand berücksichtigt, sondern aus anderen Gründen für die Ausführung oder als Qualitätssicherungsmaßnahme gefordert, dann kann die Höhe der Vorspannkraft F_{n.C}- gemäß DASI-Richtlinie 024 berücksichtigt werden.

2 Einteilung der Verbindungskategorienen

nach DIN EN 1993-1-8 in Zielebenen des Vorspannens nach DASt-Richtlinie 024

Zielebene I Zielebene II Tragsicherheitsrelevantes Vorspannen

Gebrauchstauglichkeitsrelevantes Vorspannen

Kategorie A Zielebene II

Kategorie B/C

Kategorie D Zielebene II

Kategorie E

Bemessungswerte der Lochleibungstragfähigkeit F_{b,Rd} in [kN] für eine Blechdicke von t = 10 mm aus Baustahl S235 (f_u = 360 N/mm²)

HV-	Garnit	ur	M12	M16	M20	M22	M24	M27	M30	M36			M12	M16	M20	M22	M24	M27	M30	M36
	d₀ ir	n mm	13	18	22	24	26	30	33	39	d₀ in	mm								
1090-2 = 2,4 d ₀	p ₁ =	30 35	29,8 37,1								e 1 =	20 25	29,4 36,8	35,4						
EN 1		40 45	44,5 51,9	37,5 44,6							근	30 35	44,1 51,5	42,5 49,6	43,5 50,7	43,8 51,1	51,5			
nach DIN 1,2 d₀ und	_	50 55	57,4 57,4	51,7 58,8	48,5 55,8	54,0					Kraftrichtung [mm]	40 45	57,4 57,4	56,7 63,7	57,9 65,2	58,4 65,7	58,8 66,2	57,4 64,5	57,9 65,2	
Nennlochspiel für normale runde Löcher nach DIN Abstände senkrecht zur Kraftrichtung $\mathbf{e}_z = 1,2~d_0$ und	[m m]	60 65	ļ	65,9 73,0	63,0 70,3	61,4	59,6				htung	50 55	1	70,8 76,5	72,4 79,7	73,0 80,3	73,6 80,9	71,7 78,9	72,4 79,7	73,6 80,9
	Kraftrichtung	70 75		76,5 76,5	77,5 84,8	76,0 83,3	74,3 81,6	68,1 75,3	72,8		aftric	60 65		76,5 I	86,9 94,2	87,6 95,0	88,3 95,6	86,1 93,2	86,9 94,2	88,3 95,6
le Lö	ıftrich	80 85		ļ	92,0 95,6	90,6 97,9	89,0 96,4	82,5 89,6	80,0 87,3		in Kr	70 75		•	95,6 95,6	102,3 105,2	103,0 110,3	100,4 107,6	101,4 108,7	103,0 110,3
runc ftricht	in Kro	90 95			95,6 I	105,2 105,2	103,7 111,1	96,8 104,0	94,5 101,8	89,4 96,7	d e₁ in l	80 85			1	105,2 I	114,7 114,7	114,7 121,9	115,9 123,1	117,7 125,0
male r Krat	ē	100 105			+	1	114,7 114,7	111,2 118,3	109,0 116,3	104,1 111,4	stan	90 95				•	1	129,1 129,1	130,4 137,6	132,4 139,7
r nor ı ht zu	stanc	110 115					1	125,5 129,1	123,5 130,7	118,8 126,1	Randabstand	100 105						1	143,4 143,4	147,1 154,5
iel fül nkrec	Lochabstand	120 125						129,1 I	138,0 143,4	133,5 140,8	Ba	110 115							1	161,8 169,2
Nennlochspiel für normale runde Löche Abstände senkrecht zur Kraftrichtung e ₂ =	Š	130 135						+	143,4	148,2 155,6		120 125								172,1 172,1
ennlo		140 145							1	162,9 170,3										
Abs		150 155								172,1 172,1										

4 Bemessungswerte der Abschertragfähigkeit F_{v,Rd} in [kN] je Scherfuge

١									
	A _S [mm ²]	84,3	157	245	303	353	459	561	817
	Aschaft [mm ²]	113	201	314	380	452	573	707	1018
	F _{v,Rd} Scherfuge im Gewinde [kN]	33,7	62,8	98,0	121	141	184	224	327
	F _{v,Rd} Scherfuge im Schaft [kN]	54,2	96,5	151	182	217	275	339	489

5 Bemessungswerte der Zugtragfähigkeit F_{t,Rd} in [kN]

I t,Rd	III [KIN							
A _S [mm ²]	84,3	157	245	303	353	459	561	817
F _{i,Rd} [kN]	60,7	113	176	218	254	330	404	588

6Bemessungswerte der Lochleibungstragfähigkeit F_{b,Rd} in [kN] für eine Blechdicke von t = 10 mm aus Baustahl S2<u>35 (fu = 360 N/mm²)</u>

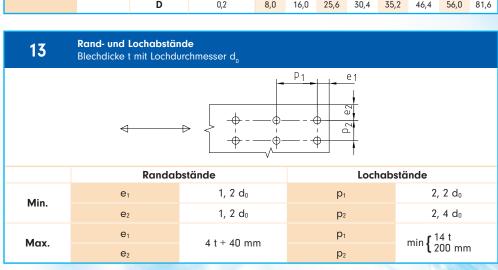
HV	-Garn	itur	M12	M16	M20	M22	M24	M27	M30	M36			M12	M16	M20	M22	M24	M27	M30	M36
	do i	n mm	13	18	22	24	26	30	33	39	d₀ in	mm								
~ 0	p1 =	30	44,9								e 1 =	20	44,3							
90-2 3 d ₀		35	55,9									25	55,4	53,3						
1090-2 ≥ 3 d ₀		40	67,0	56,5								30	66,5	64,0	65,5	66,0				
		45	78,1	67,2							_	35	77,5	74,7	76,4	77,0	77,5			
ш -		50	86,4	77,9	73,1						[mm]	40	86,4	85,3	87,3	88,0	88,6	86,4	87,3	
nach DIN E		55	86,4	88,5	84,0	81,4					ᆂ	45	86,4	96,0	98,2	99,0	99,7	97,2	98,2	
ੂ ਨੂੰ		60	- 1	99,2	94,9	92,4	89,7				g	50	1	106,7	109,1	110,0	110,8	108,0	109,1	110,8
nac 1,5	E E	65	+	109,9	105,8	103,4	100,8				글	55	*	115,2	120,0	121,0	121,8	118,8	120,0	121,8
	트	70		115,2	116,7	114,4	111,9	102,6			Kraftrichtung	60		115,2	130,9	132,0	132,9	129,6	130,9	132,9
ê Ç	g.	75		115,2	127,6	125,4	123,0	113,4	109,6		Ę	65		- 1	141,8	143,0	144,0	140,4	141,8	144,0
છ ું છૂ	Kraftrichtung	80		- 1	138,5	136,4	134,0	124,2	120,5		호	70		*	144,0	154,0	155,1	151,2	152,7	155,1
<u>e</u>	Ě	85		*	144,0	147,4	145,1	135,0	131,5		.⊑	75			144,0	158,4	166,2	162,0	163,6	166,2
5 55	Ę.	90			144,0	158,4	156,2	145,8	142,4	134,6	ē	80			1	158,4	172,8	172,8	174,5	177,2
aft a	n i	95			-1-	158,4	167,3	156,6	153,3	145,7	ਕੂ	85			•	1	172,8	183,6	185,5	188,3
불호	ē	100			*	1	172,8	167,4	164,2	156,7	abstand	90 95				•	1	194,4	196,4	199,4
E 5	P	105 110				·	172,8	178,2 189,0	175,1	167,8	ps	100					·	194,4	207,3	210,5
5 ±	sta	115					1	194,4	186,0 196,9	178,9 190,0	8	105						1	216,0 216,0	221,5 232,6
ipiel für normale runde Löcher senkrecht zur Kraftrichtung e₂ ≥	Lochabstand	120						194,4	207,8	201,0	Rand	110							210,0	243,7
는 자	20	125						174,4	216,0	212,1	~	115							ļ	254,8
		130						ļ	216,0	223,2		120								259,2
Nennlochspiel für normale runde Löcher Abstände senkrecht zur Kraftrichtung e₂ ≥		135							2.0,0	234,3		125								259,2
Nennloch! Abstände		140							1	245,4										,=
eni		145								256,4										
ZZ		150								259,2										

Bemessungswerte der Lochleibungstragfähigkeit $F_{b,Rd}$ in [kN] für eine Blechdicke von t = 10 mm aus Baustahl S235 ($f_u = 360 \text{ N/mm}^2$) 7

HVP-	Garn	itur	M12	M16	M20	M22	M24	M27	M30	M36			M12	M16	M20	M22	M24	M27	M30	M36
5-2	do i	n mm	13	17	21	23	25	28	31	37	d₀ in	mm								
286-2 2,4 d ₀	p ₁ =	30 35	32,3 40,2								e 1 =	20 25	31,9 39,8	39,8						
iiß ISO ; p ²= 2,		40 45	48,2 56,2	43,4 51,4							_	30 35	47,8 55,8	47,8 55,8	47,8 55,8	47,8 55,8	47,8 55,8	55,8		
11 gemäß d₀ und p²		50 55	62,2	59,4 67,3	54,6 62,5	60,2	57,8				[mm]	40 45	62,2	63,7	63,7 71,7	63,7 71,7	63,7 71,7	63,7 71,7	63,7 71,7	71,7
H11 g	[mm]	60 65	J	75,3 81,3	70,5 78,5	68,1 76,1	65,7 73,7	70,1				50 55	02,2 	71,7 79,7 81,3	71,7 79,7 87,6	71,7 79,7 87,6	71,7 79,7 87,6	71,7 79,7 87,6	71,7 79,7 87,6	71,7 79,7 87,6
o −		70 75		81,3	86,5 94,4	84,1 92,0	81,7 89,6	78,1 86,1	74,5 82,5		Kraftrichtung	60 65		81,3	95,6 100,4	95,6 103,6	95,6 103,6	95,6 103,6	95,6 103,6	95,6 103,6
Passschrauben in der Toleranzlag senkrecht zur Kraftrichtung e z =	in Kraftrichtung	80 85		1	100,4 100,4	100,0 108,0	97,6 105,6	94,0 102,0	90,4 98,4	91,2	in Kra	70 75		Ţ	100,4	110,0 110,0	111,6 119,5	111,6 119,5	111,6 119,5	111,6 119,5
ler Tol trichtu	Kraf	90 95			1	110,0 110,0	113,5 119,5	110,0 117,9	106,4 114,3	99,2 107,2	6	80 85			Ţ	Ţ	119,5 I	127,5 133,9	127,5 135,5	127,5 135,5
n in d Kraf	ō	100 105				1	119,5 I	125,9 133,9	122,3 130,3	115,1 123,1	Randabstand	90 95					+	133,9	143,4 148,2	143,4 151,4
zube It zur	tand	110 115					+	133,9	138,2 146,2	131,1 139,0	dab	100 105						Ţ	148,2	159,4 167,3
schro krec	Lochabstand	120 125						1	148,2 148,2	147,0 155,0	Ran	110 115							ţ	175,3 176,9
• Pass e sen	Po	130 135							1	162,9 170,9		120 125								176,9 ↓
Löcher für P Abstände		140 145								176,9 176,9										
Löch Abs		150 155								ļ										

Bemessungswerte der Abschertragfähigkeit

8 F _{v,Rd} i	n [kN] je S	cherf	uge		Ĭ			Y F _{t,R}	d in [l	kN]			Ĭ	Ť		
A _{Schaft} [mm ²]	133	227	346	415	491	616	755	1075	As [mm²]	84,3	157	245	303	353	459	561	817
F _{v,Rd} [kN]	63,7	109	166	199	236	296	362	516	F _{t,Rd} [kN]	60,7	113	176	218	254	330	404	588


Bemessungswerte der Zugtragfähigkeit

Bemessungswerte der Lochleibungstragfähigkeit $F_{b,Rd}$ in [kN] für eine Blechdicke von t=10 mm aus Baustahl S235 ($f_u=360\ N/mm^2$) 10

HVP-	Garn	itur	M12	M16	M20	M22	M24	M27	M30	M36			M12	M16	M20	M22	M24	M27	M30	M36
286-2 d o	d ₀ ir p ₁ =	n mm 30	13 48,6	17	21	23	25	28	31	37	do ir e 1 =	mm 20	48,0							
SC 4		35 40 45	60,6 72,6 84,6	65,4 77,4								25 30 35	60,0 72,0 84,0	60,0 72,0 84,0	72,0 84,0	72,0 84,0	72,0 84,0	84,0		
gemäß und pz		50 55	93,6 93,6	89,4 101,4	82,2 94,2	90,6	87,0				[m m]	40 45	93,6 93,6	96,0 108,0	96,0 108,0	96,0 108,0	96,0 108,0	96,0 108,0	96,0 108,0	
1,5 d ₀	[m m]	60 65 70	1	113,4 122,4 122,4	106,2 118,2 130,2	102,6 114,6 126,6	99,0 111,0 123,0	105,6	110.0		Kraftrichtung	50 55	1	120,0 122,4	120,0 132,0	120,0	120,0	120,0 132,0	120,0 132,0	132,0
		75 80		122,4	142,2 151,2	138,6 150,6	135,0 135,0 147,0	117,6 129,6 141,6	112,2 124,2 136,2		raftric	60 65 70		122,4	144,0 151,2 151,2	144,0 156,0 165,6	144,0 156,0 168,0	144,0 156,0 168,0		144,0 156,0 168,0
olerar htung	Kraftrichtung	85 90		·	151,2	162,6 165,6	159,0 171,0	153,6 165,6	148,2 160,2	137,4 149,4	1 in K	75 80			J	165,6	180,0 180,0	180,0 192,0	180,0	180,0 192,0
der T	.⊑	95 100			Ţ	165,6	180,0 180,0	177,6 189,6	172,2 184,2	161,4 173,4	Φ	85 90				Ţ	1	201,6 201,6	204,0	204,0 216,0
zur K	nd pı	105 110				1	1	201,6 201,6	196,2 208,2	185,4 197,4	Randabstand	95 100						ļ		228,0 240,0
hrauk krecht	Lochabstand	115						ļ	220,2	209,4	Rand	105 110							1	252,0 264,0
asssc le sen	Loch	125 130 135							223,2	233,4 245,4 257,4		115 120 125								266,4 266,4
Löcher für Passschrauben in der Toleranzlag Abstände senkrecht zur Kraftrichtung e ≥ ≥		140 145								266,4 266,4		123								+
Löche Ak		150 155								1										

Bemessungswerte des Durchstanzwiderstandes B_{p,Rd} in [kN] Werkstoffe nach DIN EN 10025 mit einer Blechdicke von t = 10mm f_{ν} [N/mm²] M12 M16 M20 M22 M24 M27 M30 M36 S235 S275 S355

12	Bemessun	gswerte des	Gleitwiderstan	des F _{s,1}	Rd in [kl	N]					
Grenzzustand	Vorspann-	Gleitflächen-	Reibungszahl			So	hraub	engröß	е		
Orenzzostana	kraft	klasse	wμ	M12	M16	M20	M22	M24	M27	M30	M36
		Α	0,5	26,8	50,0	78,2	96,4	112,0	146,0	179,0	260,0
	F _{pC}	В	0,4	21,5	40,0	62,5	77,1	89,8	117,0	143,0	208,0
	ı pc	С	0,3	16,1	30,0	46,9	57,8	67,4	87,5	107,0	156,0
Gebrauchs-		D	0,2	10,7	20,0	31,3	38,5	44,9	58,4	71,5	104,0
tauglichkeit		Α	0,5	22,7	45,5	72,2	86,4	100,0	132,0	159,0	232,0
	F _{pC} .	В	0,4	18,2	36,4	58,2	69,1	80,0	105,0	127,0	185,0
	■ pC	С	0,3	13,6	27,3	43,6	51,8	60,0	79,1	95,5	139,0
		D	0,2	9,1	18,2	29,1	34,5	40,0	52,7	63,6	92,7
		Α	0,5	23,6	44,0	68,8	84,8	98,8	128,0	157,0	229,0
	F _{pC}	В	0,4	18,9	35,2	55,0	67,8	79,0	103,0	126,0	183,0
	ı pc	С	0,3	14,2	26,4	41,3	50,9	59,3	77,0	94,3	137,0
Tragfähigkeit		D	0,2	9,4	17,6	27,5	33,9	39,5	51,4	62,9	91,5
Hagianigken		Α	0,5	20,0	40,0	64,0	76,0	88,0	116,0	140,0	204,0
	F _{pC} .	В	0,4	16,0	32,0	51,2	60,8	70,4	92,8	112,0	163,0
	• pC	С	0,3	12,0	24,0	38,4	45,6	52,8	69,6	84,0	122,0
		D	0,2	8,0	16,0	25,6	30,4	35,2	46,4	56,0	81,6

1.1	Vorspannkräfte F _{p,C*} und Anziehdrehmomente M _A für HV-Garnituren
14	entsprechend DASt-Richtlinie 0.24 für HV-Garnituren der k-Klasse K1 nach DIN FN 14399-1

		Modifizie	rtes Drehmoment-Vospani	nverfahren
		Handfest	1. Anziehschritt	2. Anziehschritt
Gewinde	Regel- vorspannkraft F _{p,C*}	Empfohlenes "Hand- fest" Anziehmoment M _{A,h} [Nm]	Voranziehmoment M _{Vor} [Nm]	Aufzubringendes Anziehmoment M _A [Nm]
Ø	[kN]	• fe	lächenzustände der HV-G uerverzinkt oder wie herge sulfid oder gleichwertigem	estellt.
M12	50	15	75	100
M16	100	35	190	250
M20	160	60	340	450
M22	190	90	490	650
M24	220	110	600	800
M27	290	165	940	1250
M30	350	220	1240	1650
M36	510	350	2100	2800

Hinweis: Die Schrauben, Muttern und Scheiben werden in feuerverzinkter Ausführung mit unter Prozessbedingungen geschmierter Mutter ausgeliefert; eine Modifizierung der Schmierung ist nicht zulässig. Das Innengewinde der Mutter ist nicht feuerverzinkt und lediglich durch die aufgebrachte Schmierung vor Korrosion geschützt. Unsachgemäße Transport- und Lagerungsbedingungen können zu übermäßiger Korrosion des Innengewindes und damit zu einer Veränderung des beim Auslieferungszustand eingestellten Zusammenhangs zwischen Anziehmoment und Vorspannkraft führen.

AF.Dro

Die neue Muttern-Schmierung von Friedberg für HV-Verbindungen im Stahlbau bis M36:

Bahnbrechende Verbesserungen besonders bei schraub-technischen Verbindungen sieht man nicht unbedingt auf den ersten Blick. Näheres Hinsehen lohnt sich daher gleich mehrfach, denn August Friedberg hat mit AF.PRO eine neue Schmierung für Schraubsysteme entwickelt, die es in sich hat.

Vorspannkräfte F_{p,c} und Voranziehmomente M_{Vor} für das kombinierte Vorspannverfahren entsprechend DIN EN 1090-2 / DASt-Richtlinie 024 für HV-Garnituren der k-Klasse K1 nach DIN EN 14399-1

e B	Mindon	Ког	mbiniertes Vorspannverfal	hren
Gewinde	Mindest- vorspannkraft F _{p,C}	Empfohlene "Hand- fest" Anziehmomente M _{A,h} [Nm]	Voranziehmoment M _{vor} [Nm]	Weiterdrehwinkel $\Delta\Theta$ [°]
M12	59	15	75	
M16	110	35	190	
M20	172	60	340	
M22	212	90	490	gemäß nachfolgender
M24	247	110	600	Tabelle
M27	321	165	940	
M30	393	220	1240	
M36	572	350	2100	

Hinweis

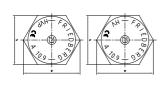
Zum Erreichen des Vorspannkraftniveaus $F_{p,C}$ nach DIN EN 1090-2 / DASt-Richtlinie 024 sind FRIEDBERG HV-Garnituren mit dem kombinierten Verfahren zu verschrauben, da diese ausschließlich in der k-Klasse K1 hergestellt werden. Das Drehmomentverfahren ist für HV-Garnituren der k-Klasse K1 zum Erreichen des Vorpsannkraftniveaus $F_{p,C}$ nicht zulässig.

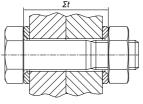
Stufenweises Anziehen und Weiterdrehwinkel ΔΘ beim kombinierten Vorspannverfahren entsprechend DIN EN 1090-2 / DASt-Richtlinie 024 für HV-Garnituren der k-Klasse K1 nach DIN EN 14399-1

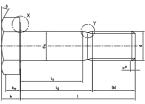
Handfest	Handfestes Anziehen mit den empfohlenen Anziehmomenten M _{A.h}
1. Anziehschritt	Aufbringen des Voranziehmomentes M_{Vor} gemäß obiger Tabelle für alle Elemente in einer Verbindung. Markierung der Lage aller Muttern relativ zu den Schraubengewinden.
2. Anziehschritt	Sichtprüfung mit Ergänzung von fehlenden Markierungen. Aufbringen des Weiterdrehwinkels ΔΘ in Abbängigkeit von der Klemmlänge Σt

Gesamtnenndicke Σ t der zu verbindenden Teile (einschließlich aller Futterbleche und Scheiben)	Weiterdrehwinkel im	zweiten Anziehschritt
d = Schraubendurchmesser	Winkel	Drehung
$\Sigma t < 2 d$	60°	1/6
$2 d \leq \Sigma t \leq 6 d$	90°	1/4
$6 d \leq \Sigma t \leq 10 d$	120°	1/3

Hinweis

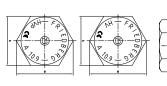

Ist die Oberfläche unter dem Schraubenkopf oder der Mutter (unter Berücksichtigung von gegebenenfalls eingesetzten Keilscheiben) nicht senkrecht zur Schraubenachse, sollte der erforderliche Weiterdrehwinkel durch Versuche bestimmt werden.

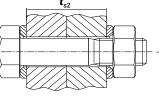

DER HV-SPEZIALIST


Wer ein technisch und architektonisch anspruchsvolles Gebäude anschaut, denkt nicht gleich an Schrauben von Friedberg. Konstruktion und Bauweise beherrschen das Bild. Aber ohne hochwertige Schraubverbindungen sind viele bauliche Highlights nicht denkbar – und schon gar nicht umsetzbar.

Architekten und Planer im modernen Stahlbau verlassen sich daher seit vielen Jahren auf Verbindungstechnologie von Friedberg. Was unsere Werke verlässt, hat harte Prüfungen hinter sich, jede Menge Belastung vor sich – und besondere Werte in sich: zertifizierte Qualität, eine fundierte Entwicklung, dokumentierte Abläufe und unsere Erfahrung von über 140 Jahren.

Diese Arbeitshilfe für HV-Verbindungen gibt Ihnen einen Überblick über die technische Verwendbarkeit unserer Schrauben für den Hochbau und soll Ihnen als Begleiter bei der Anwendung von HV-Verbindungen in der täglichen Praxis die Arbeit erleichtern.





		M12	M16	M20	M22	M24	M27	M30	M36
Gewinde-Ø	d	12	16	20	22	24	27	30	36
Schaft-Ø HV	$d_{s,nom}$	12	16	20	22	24	27	30	36
Schaft-Ø HVP	$d_{s,nom}$	13	17	21	23	25	28	31	37
Kopfhöhe	k _{nom}	8	10	13	14	15	17	19	23
Mutternhöhe	m _{nom}	10	13	16	18	20	22	24	29
Schlüsselweite	Smax	22	27	32	36	41	46	50	60
Eckenmaß	e _{min}	23,91	29,56	35,03	39,55	45,20	50,85	55,37	66,44
Scheiben-Außen-Ø	$d_{2,max}$	24	30	37	39	44	50	56	66
Mutternhöhe	h _{nom}	3	4	4	4	4	5	5	6

	THOM							·	_		_		Ĭ			Ĭ			Ĭ	
Schraubenlänge	I _{nom}					Kle	mml	äng	e ∑t _{mi}	n k	ois ∑	t _{max}								
35	16	- 21																		
40	21	- 26	17 -																	
45	26	- 31	22 -	27		- 23														
50	31	- 36	27 -			- 28	22	- 27	7											
55	36	- 41	32 -			- 33		- 32												
60	41	- 46		42		- 38		- 37												
65	46	- 51		47		- 43		- 42			39									
70	51	- 56	47 -			- 48		- 47					-	41						
75	56	- 61	52 -			- 53		- 52				41		46	39	-	44			
80		- 66	57 -			- 58		- 5			54		-	51	44	-	49			
85		- 71	62 -			- 63		- 62			59		-	56	49	-	54	43	-	48
90	71	- 76	67 -			- 68		- 6					-	61	54	-	59	48	-	53
95	76	- 81	72 -			- 73		- 72			69		-	66	59	-	64	53		58
100	81		77 -			- 78		- 7				66		71	64		69	58		63
105	86		82 -			- 83		- 82			79	71		76			74	63		68
110	91	- 96		92		- 88		- 87			84		-	81	74		79	68		73
115		- 101		97		- 93		- 92			89		-	86	79		84	73		78
120		- 106	97 -			- 98 107		- 97	12 94		94			91	84		89 94	78 83		83
125 130		- 111 - 116	102 -						7 99			91					99	88		88 93
135		- 121							2 104								104	93		
140			117 -																	
145		- 131							2 114											
150		- 136							7 119											
155		- 141							2 124											
160			137 -																	
165		- 151							2 134											
170		- 156							7 139											
175		- 161							2 144											
180		- 166																		
185		- 171							2 154											
190	171	- 176							7 159											
195	176	- 181	172 -	177	168	- 173	167	- 17	2 164	-	169	161	-	166	159	-	164	153	-	158
200	181	- 186																		
Maitana Cabaasabaalii		f Af.																		

Weitere Schraubenlängen können auf Anfrage hergestellt werden.

7	Ď	Υ ,
$\left\{ \cdot \right\}$		
	lg	(b)

		M12	M16	M20	M22	M24	M27	M30	M36
Gewinde-Ø	d	12	16	20	22	24	27	30	36
Schaft-Ø HV	$d_{s,nom}$	12	16	20	22	24	27	30	36
Schaft-Ø HVP	$d_{s,nom}$	13	17	21	23	25	28	31	37
Kopfhöhe	k_{nom}	8	10	13	14	15	17	19	23
Mutternhöhe	m_{nom}	10	13	16	18	20	22	24	29
Schlüsselweite	S _{max}	22	27	32	36	41	46	50	60
Eckenmaß	e _{min}	23,91	29,56	35,03	39,55	45,20	50,85	55,37	66,44
Scheiben-Außen-Ø	$d_{2,\text{max}}$	24	30	37	39	44	50	56	66
Mutternhöhe	h_{nom}	3	4	4	4	4	5	5	6

ı	Schraubenlänge I _{no}	m								Pa	keto	lic	ke t	s2,min	b	is t _s	2,max								
ı	35		10 -	15																					
	40		15 -	20	9	-	14																		
	45		20 -	25	14	-	19	10	-	15															
	50		25 -	30	19	-	24	15	-	20	14	-	19												
	55		30 -	35	24	-	29	20	-	25	19	-	24												
	60		35 -	40	29	-	34	25	-	30	24	-	29	21	-	26									
	65		40 -	45	34	-	39	30	-	35	29	-	34	26	-	31									
	70		45 -	50	39	-	44	35	-	40	34	-	39	31	-	36	26	-	31						
ı	75	ļ	50 -	55	44	-	49	40	-	45	39	-	44	36	-	41	31	-	36	29	-	34			
	80	!	55 -	60	49	-	54	45	-	50	44	-	49	41	-	46	36	-	41	34	-	39			
ı	85		60 -	65	54	-	59	50						46			41	-		39			31	-	36
ı	90		65 -		59			55									46			44			36	-	41
	95		70 -		64			60			59			56			51			49		54	41		46
	100		75 -		69			65						61			56			54			46		51
	105		80 -		74			70						66			61			59			51		56
ı	110		85 -		79			75						71			66			64			56	-	61
	115		90 -		84			80			79			76						69				-	66
	120			100										81			76					79	66		71
	125			105													81			79			71		76
ı	130			110													86			84		89		-	81
	135			115																89			81		86
ı	140			120																					91
ı	145			125																					96
	150			130																					
	155			135																					
	160			140																					
ı	165			145																					
ı	170			150																					
	175 180			155																					
	185			160 165																					
1	190			170																					
ı	195			175																					
	200			175																					
	200		/3 -	1/3	109		1/4	100	-	1/0	104	-	109	101	-	100	130		101	134		137	140	-	131

Weitere Schraubenlängen können auf Anfrage hergestellt werden.

PRODUKTIVE STÄRKE. WELTWEITE MÄRKTE.

Der Lebenslauf einer Schraube von AUGUST FRIEDBERG durchläuft eine spannende Karriere. Nach einer äußerst intensiven und vielseitigen Ausbildung in der Produktion, geprägt durch zahllose Prüfungen und Härtetests, herangebildet in komplexen Verfahren und unter den scharfen Augen schonungsloser Experten, erfährt die Schraube bis zum letzten Schliff die harte Schule modernster Produktions- und Verfahrenstechnik

Am Ende dieses Prozesses steht die gut geplante Reise zu den weltweiten Einsatz- und Verwendungsorten, wo sie fortan hält, was sie verspricht. Damit unsere Schrauben überall beste Zeugnisse bekommen, haben wir hochgeschraubte Produktionstechnik vorgeschaltet, über die wir aus guten Gründen dichthalten.

Vieles entstammt eigener Entwicklungsarbeit und der Erfahrung aus über 140 Jahren.

August Friedberg GmbH

Achternbergstraße 38a 45884 Gelsenkirchen Tel.: +49 (0) 2 09-91 32-0 Fax.: +49 (0) 2 09-91 32-178 E-mail: info@august-friedberg.de

www.august-friedberg.de